Follow Slashdot blog updates by subscribing to our blog RSS feed

 



Forgot your password?
typodupeerror
×
Biotech Hardware Science Technology

Researchers Create Logic Circuits From DNA 94

separsons writes "Researchers at Duke University recently used DNA to craft tiny chips used in computers and electronic circuits. By mixing DNA snippets with other molecules and exposing them to light, researchers created self-assembling, DNA-based logic circuits. Once perfected the tech could serve as an endlessly abundant, cheap alternative to silicon semiconductors. Chris Dwyer, lead researcher on the project, says that one grad student using DNA to make self-assembling circuits could produce more logic circuits in one day than the global silicon chip industry can create in an entire month!"
This discussion has been archived. No new comments can be posted.

Researchers Create Logic Circuits From DNA

Comments Filter:
  • by Ancient_Hacker ( 751168 ) on Wednesday May 12, 2010 @08:17PM (#32188220)

    As Turing might say: What a load of cobblers

    While you might be able to make ten gazillion AND gates, you still have the minor problem of HOOKING THEM UP into some useful logical building blocks, like adders, buffers, and memory. And the bigger problem of amplifying the results to a level acceptable to the following inputs. And figuring out how to distribute power (ATP) to each amplifier.

    And the signal levels are so low, thermal noise is going to induce a lot more errors than you'd like.

    And the speed is not likely to be very exciting.

    I would not start short-selling Intel stock based on this technology.

  • by Sulphur ( 1548251 ) on Wednesday May 12, 2010 @08:17PM (#32188222)

    If this stuff became sentient, then would it think it was a grad student?

  • Heat (Score:4, Interesting)

    by izomiac ( 815208 ) on Wednesday May 12, 2010 @09:01PM (#32188486) Homepage
    This sounds quite promising, but I'd worry about DNA's melting point. Double stranded DNA will melt and become single stranded DNA at around 100 degrees Celsius. However, this melting point is quite variable since GC bonds are ~50% stronger than AT bonds, so the actual melting point could be much higher or much lower. AFAIK doing any sort of calculation requires heat to be produced, so I'd imagine you'd get localized melting of the DNA and disruption of the engineered structure if you did any significant amount of work on it. I'll be interested to see how they solve this problem, since you can't really do much to increase the strength or the number of hydrogen bonds.

He has not acquired a fortune; the fortune has acquired him. -- Bion

Working...