Please create an account to participate in the Slashdot moderation system

 



Forgot your password?
typodupeerror
×
Hardware

Extreme Ultraviolet Chip Manufacturing Process Technology Closer To Reality 49

MojoKid writes "One of the greatest obstacles standing between chip manufacturers and the pursuit of smaller, faster, processors is the lack of a proper light source. Current chips are etched using a deep ultraviolet wavelength of 193nm, but at a 28nm semiconductor process geometry, we've reached the limits of what a 193nm wavelength is small enough to etch. Extreme ultraviolet lithography (EUV) has been pegged as the most likely replacement for current 193nm technology, but repeated problems with ramping EUV have left it stalled on the runway. Now, for the first time, foundry technology developer ASML, which made headlines last year by partnering more closely with Intel and TSMC, believes it has cleared some of the hurdles between it and widespread EUV commercialization. The company predicts EUV technology could be ready for ramp by 2015. Two problems have stymied EUV deployment thus far. The first is the strength of the light source. Generating EUV at the intensities required for mass production can require as much as an order of magnitude more input power than conventional lithography. Second, there's the issue of exposure time. The two are linked — a higher-power system can etch wafers more quickly, but the power requirements could edge into the kilowatt range for each piece of equipment. The NXE:3300, which ASML is shipping this year, will be capable of hitting 125 wafers per hour, once the company boosts the light source up to 250W. That boost is still off in the future. Current NXE:3300 machines are targeting 80W by the end of the year."
This discussion has been archived. No new comments can be posted.

Extreme Ultraviolet Chip Manufacturing Process Technology Closer To Reality

Comments Filter:
  • seriously?! (Score:2, Informative)

    by Anonymous Coward on Wednesday August 07, 2013 @03:36AM (#44494849)

    someone explain to me how this is any different to the story posted not 48 hours ago http://hardware.slashdot.org/story/13/08/05/2336251/euv-chipmaking-inches-forward

  • by Anonymous Coward on Wednesday August 07, 2013 @09:22AM (#44496361)

    The picture seems to show the EUV light bouncing off 9 or 10 mirrors. What's up with that? It seems like getting good alignment on all that would be nearly impossible. Or are those "active" mirrors used for progressively correcting the alignment? What's up with those things?

    Thanks for any insight.

    Can't use diffractive optics at those wavelengths -- have to use reflective optics to prep the beam. Also, the beam itself isn't used for alignment, but shines through a stencil-like 'mask' that causes the features to be patterned in the photoresist.

    One more thing -- photolithography itself isn't directly etching anything. It's used to generate patterns in a photoresist layer that is THEN used as a protective layer for etching etc. Subtle details...

The only possible interpretation of any research whatever in the `social sciences' is: some do, some don't. -- Ernest Rutherford

Working...