Follow Slashdot blog updates by subscribing to our blog RSS feed


Forgot your password?

Slashdot videos: Now with more Slashdot!

  • View

  • Discuss

  • Share

We've improved Slashdot's video section; now you can view our video interviews, product close-ups and site visits with all the usual Slashdot options to comment, share, etc. No more walled garden! It's a work in progress -- we hope you'll check it out (Learn more about the recent updates).

AMD Intel Hardware Technology

The Transistor Wars 120

Posted by Soulskill
from the not-so-long-ago-in-a-galaxy-that-looks-pretty-familiar dept.
An anonymous reader writes "This article has an interesting round-up of how chipmakers are handling the dwindling returns of pursuing Moore's Law. Intel's about four years ahead of the rest of the semiconductor industry with its new 3D transistors. But not everyone's convinced 3D is the answer. 'There's a simple reason everyone's contemplating a redesign: The smaller you make a CMOS transistor, the more current it leaks when it's switched off. This leakage arises from the device's geometry. A standard CMOS transistor has four parts: a source, a drain, a channel that connects the two, and a gate on top to control the channel. When the gate is turned on, it creates a conductive path that allows electrons or holes to move from the source to the drain. When the gate is switched off, this conductive path is supposed to disappear. But as engineers have shrunk the distance between the source and drain, the gate's control over the transistor channel has gotten weaker. Current sneaks through the part of the channel that's farthest from the gate and also through the underlying silicon substrate. The only way to cut down on leaks is to find a way to remove all that excess silicon.'"
This discussion has been archived. No new comments can be posted.

The Transistor Wars

Comments Filter:

Good day to avoid cops. Crawl to work.