Please create an account to participate in the Slashdot moderation system


Forgot your password?
Hardware Hacking Open Source Hardware Build

Opportunities From the Twilight of Moore's Law 148 writes "Andrew 'bunnie' Huang just posted an excellent essay, Why the Best Days of Open Hardware are Yet to Come. He shows how the gradually slowing pace of semiconductor density actually may create many new opportunities for smaller scale innovators and entrepreneurs. It's based on a talk presented at the 2011 Open Hardware Summit. Are we entering an age of heirloom laptops and artisan engineering?"
This discussion has been archived. No new comments can be posted.

Opportunities From the Twilight of Moore's Law

Comments Filter:
  • by Kjella ( 173770 ) on Thursday September 22, 2011 @03:15PM (#37483252) Homepage

    By the time Moore's law slows down, we'll also have systems on a chip. Replaceable parts? We've moved the other way from the days you could solder chips and until today. Extension cards are almost gone, more and more of the north/south bridge and motherboard chips is moving into the CPU, now even the graphics card is moving into the CPU for many.

    His argument sounds to me to use the same logic as arguing that once computers don't get faster, we'll have to make applications faster so we'll see a return of assembler language and hand optimization. Somehow, I don't think that's very likely. I'd make a fair bet that custom hardware is even more of a niche in 20-30 years than it is now.

  • Unlikely (Score:4, Interesting)

    by Nethemas the Great ( 909900 ) on Thursday September 22, 2011 @03:20PM (#37483278)

    Firstly it's high unlikely that Moore's law will be retiring any time soon. All we are seeing is a slow down in the advancement of shrinking the manufacturing process. That doesn't say anything about performance improvements by other means. We are continually seeing advancement in performance per watt which is enabling CPUs to spread their dies not only "out" but even now we're seeing the prospect of "up" with promising research in layering techniques. Beyond that there are carbon rather than silicon based materials coming online that promise to further improve upon the performance per watt angle. We're even starting to see glimmers of hope in the quantum computing arena which would be game changing.

    With respect to small companies being able to enter the market and compete with the "big guys" I would seriously doubt it. The first and obvious reason being the cost factor being a barrier to entry. The equipment isn't cheap and contending in the patent arena is worse. The most you'll ever see here is university level research being sold off to the big guys.

  • Re:I am a physicist (Score:5, Interesting)

    by Guspaz ( 556486 ) on Thursday September 22, 2011 @06:03PM (#37485352)

    There are theoretical limitations to how small things can get, and how much work can be done per unit of space, but we're nowhere near that yet.

    The author claims that semiconductor density improvements have been slowing over the past few years, but that's not true at all. One need only look at past schedule of Intel's die shrinks, or their transistor counts, to realize that we're still going ahead at full steam. The pace of reductions has held pretty much constant to Moore's law for at least the past decade, and Intel's roadmaps seem to show that continuing for at least another two die shrinks (which will each double density).

    It's kind of amazing, when you think of it. Comparing the best of 2002 to 2012, you get from 90nm to 22nm. In just one decade, that is a 16.7x increase in density, and that doesn't even take architectural improvements into account.

Top Ten Things Overheard At The ANSI C Draft Committee Meetings: (9) Dammit, little-endian systems *are* more consistent!