Follow Slashdot stories on Twitter


Forgot your password?
Power Hardware

Silicon Nanoparticles Could Lead To On-Demand Hydrogen Generation 163

Posted by samzenpus
from the just-add-water dept.
cylonlover writes "Researchers at the University of Buffalo have created spherical silicon nanoparticles they claim could lead to hydrogen generation on demand becoming a 'just add water' affair. When the particles are combined with water, they rapidly form hydrogen and silicic acid, a nontoxic byproduct, in a reaction that requires no light, heat or electricity. In experiments, the hydrogen produced was shown to be relatively pure by successfully being used to power a small fan via a small fuel cell."
This discussion has been archived. No new comments can be posted.

Silicon Nanoparticles Could Lead To On-Demand Hydrogen Generation

Comments Filter:
  • by Culture20 (968837) on Friday January 25, 2013 @09:47AM (#42689943)
    Then the question is "how much energy does it take to crack the oxygen back out from the acid?" Start burning that hydrogen everywhere for decades and we'll have a little less oxygen in the atmosphere. Ordinary water cracking leaves the proper amount of H and O for future reacting.
  • by mapsjanhere (1130359) on Friday January 25, 2013 @11:07AM (#42690721)
    This is strictly for military applications. The US forces in Afghanistan use 28 gallons of fuel to deliver one gallon of fuel to an outpost where a 3 gal/h generator charges an Ipod (don't laugh, that's from an US Army presentation). So, if I can charge my devices of a fuel cell fed by something like this silicon hydrogen generator I might save money not because it's energy efficient in production but energy efficient at the point of use. The reason they use silicon is that it gives you 1 gram of hydrogen per 8 grams of silicon. You could use other, cheaper, metals, but the weight ratio isn't as favorable (iron would require something like 20 to 1). As 1 kg of hydrogen gives you 127 MJ of energy, 1 kg of silicone powder gives you about 15 MJ. Compare that to a battery that gives you less than one MJ/kg, and you see the attractiveness if weight is at a premium.

You can fool all the people all of the time if the advertising is right and the budget is big enough. -- Joseph E. Levine