Want to read Slashdot from your mobile device? Point it at m.slashdot.org and keep reading!

 



Forgot your password?
typodupeerror
×
Hardware Technology

Melting Microchip Defects May Extend Moore's Law 99

schliz lets us know about research out of Princeton on melting away defects on microchips using a laser. The new technique, termed Self-Perfection by Liquefaction (SPEL), was published in the May 4 issue of Nature Nanotechnology. Researchers have traditionally approached chip defects by trying to improve the microchip fabrication process, but this eventually reaches fundamental physical limits to do with random behavior of electrons and photons. By focussing on fixing defects, the new method enables more precise shaping of microchip components, and engineers expect to dramatically improve chip quality without increasing fabrication cost. The before-and-after images are remarkable. Here's a diagram of how the process works.
This discussion has been archived. No new comments can be posted.

Melting Microchip Defects May Extend Moore's Law

Comments Filter:
  • Re:quick explanation (Score:2, Interesting)

    by Anonymous Coward on Tuesday May 06, 2008 @09:16AM (#23311006)
    I see some major issues with this in real world semiconductor manufacturing. They are depending on the surface tension of the molten liquid to straighten the lines. You will need very specific materials for this - the commonly used materials such as photoresists and dielectrics used to generate the patterns do not melt - they vaporize. The bottom surface has to be extremely "hydro"phobic (or phobic to the material).

    You could possibly use a metal. The only metal that can be melted and patterned - Aluminum, is not used at advanced nodes (less than 0.13um).

    Further, there is a whole host of other defect issues coming from pressing the "flat plate" on and releasing it.

    It is a good academic exercise, but holds very little practical applicability...
  • by Ancient_Hacker ( 751168 ) on Tuesday May 06, 2008 @09:36AM (#23311234)
    Er, this looks really keen, but you have to consider the downside. Yes, there is a downside.

    When fabricating chips, yes, you do want nice clean lines. Whopeee for clean lines. All hail clean lines. By coincidence, surface tension works towards cleaning up lines. Somebody should have patented surface tension. Too late now.

    But eventually the nice clean lines end up at a transistor or resistor. There the rules are very different. You don't want surface tension to do its thing on the end of the line, which would be to shorten it. Very conveniently these nice pictures don't show what happens at the end of each line. How convenient.

  • Very Very Impressive (Score:5, Interesting)

    by Anonymous Coward on Tuesday May 06, 2008 @10:16AM (#23311632)
    One of the major problems with getting linewidth (and thus line separation) down in the photoresist process is the problem of dielectric breakdown. Charge builds up at the irregular surface and if two points on different conductng lines are near one another they will arc across and the chip will be useless (same reason arc lamp electrodes are shaped as needles). This process seems to remove the irregularities, which should allow chip fab units to lay down pathways closer together. Note even the square spots get round(liquids form spheres to reduce surface area) which reduces the tendency for breakdown to occur. If nothing else could allow for the use of lower dielectric packaging, and make things cheaper.

    Really cool.

I have hardly ever known a mathematician who was capable of reasoning. -- Plato

Working...